Abstract

Quantum photonic devices operating in the single photon regime require the detection and characterization of quantum states of light. Chip-scale, waveguide-based devices are a key enabling technology for increasing the scale and complexity of such systems. Collecting single photons from multiple outputs at the end-face of such a chip is a core task that is frequently non-trivial, especially when output ports are densely spaced. We demonstrate a novel, inexpensive method to efficiently image and route individual output modes of a polymer photonic chip, where single photons undergo a quantum walk. The method makes use of single-pixel imaging (SPI) with a digital micromirror device (DMD). By implementing a series of masks on the DMD and collecting the reflected signal into single-photon detectors, the spatial distribution of the single photons can be reconstructed with high accuracy. We also demonstrate the feasibility of optimization strategies based on compressive sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call