Abstract
The real-time wind monitoring is widely used to evaluate the wind effect on the large-scale spatial structures. Wireless sensor network (WSN) is usually the first choice for the large-scale spatial structures to collect wind monitoring data because of its super-large size. Compressive sensing (CS) has great potential in solving the energy problem of WSN and reduces the difficulty in transmission of massive data based on sparsity. However, wind signals are often not naturally sparse on the traditional bases (e.g., Fourier basis). This paper proposes a new method of constructing a dedicated dictionary for wind speed signals using the time-shift strategy. With this proposed dictionary, the signals can be compressed by random sampling and recovered by ℓ1-norm sparse regularization. The performance of the improved CS methodology is evaluated using two large-scale spatial structures. The results show that the proposed CS methodology has better performance than the traditional CS algorithm with the Fourier basis and the linear interpolation method. Furthermore, the influences of the relevant critical parameters (regularization parameter, lag, sliding window size, and compression ratio) of the improved CS methodology are comprehensively explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.