Abstract
In Wireless Body Area Networks (WBAN) the energy consumption is dominated by sensing and communication. Recently, a simultaneous cosparsity and low-rank (SCLR) optimization model has shown the state-of-the-art performance in compressive sensing (CS) recovery of multichannel EEG signals. How to solve the resulting regularization problem, involving l0 norm and rank function which is known as an NP-hard problem, is critical to the recovery results. SCLR takes use of l1 norm and nuclear norm as a convex surrogate function for l0 norm and rank function. However, l1 norm and nuclear norm cannot well approximate the l0 norm and rank because there exist irreparable gaps between them. In this paper, an optimization model with lq norm and schatten-p norm is proposed to enforce cosparsity and low-rank property in the reconstructed multichannel EEG signals. An efficient iterative scheme is used to solve the resulting nonconvex optimization problem. Experimental results have demonstrated that the proposed algorithm can significantly outperform existing state-of-the-art CS methods for compressive sensing of multichannel EEG channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.