Abstract

Through-the-wall radar imaging (TWRI) is emerging as a viable technology for providing high-quality imagery of enclosed structures. TWRI makes use of electromagnetic waves to penetrate through building wall materials. Due to the “see” through ability, TWRI has attracted much attention in the last decade and has found a variety of important civilian and military applications. Signal processing algorithms have been devised to allow proper imaging and image recovery in the presence of high clutter, which is caused by front walls and multipath due to reflections from internal walls. Recently, research efforts have shifted toward effective and reliable imaging under constraints on aperture size, frequency, and acquisition time. In this respect, scene reconstructions are being pursued with reduced data volume and within the emerging compressive sensing (CS) framework. We present a review of the CS-based scene reconstruction techniques that address the unique challenges associated with fast and efficient imaging in urban operations. Specifically, we focus on ground-based imaging systems for indoor targets. We discuss CS-based wall mitigation, multipath exploitation, and change detection for imaging of stationary and moving targets inside enclosed structures.

Highlights

  • Through-the-wall radar imaging (TWRI) is an emerging technology that addresses the desire to see inside buildings using electromagnetic (EM) waves for various purposes, including determining the building layout, discerning the building intent and nature of activities, locating and tracking the occupants, and even identifying and classifying inanimate objects of interest within the building

  • A vertical metal dihedral was used as the target and was placed at (0, 4.4) m on the other side of the front wall

  • We presented a review of important approaches for sparse behind-the-wall scene reconstruction using compressive sensing (CS)

Read more

Summary

Introduction

Through-the-wall radar imaging (TWRI) is an emerging technology that addresses the desire to see inside buildings using electromagnetic (EM) waves for various purposes, including determining the building layout, discerning the building intent and nature of activities, locating and tracking the occupants, and even identifying and classifying inanimate objects of interest within the building. TWRI is highly desirable for law enforcement, fire and rescue, and emergency relief, and military operations.[1,2,3,4,5,6]. The third dimension provides height information, which permits distinguishing people from animals, such as household pets. This is important since radar cross-section alone for behind-the-wall targets can be unreliable

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call