Abstract
According to the compressive sensing (CS) theory in the signal-processing field, we proposed a new CS approach based on a fast projection onto convex sets (POCS) algorithm with sparsity constraint in the seislet transform domain. The seislet transform appears to be the sparest among the state-of-the-art sparse transforms. The FPOCS can obtain much faster convergence than conventional POCS (about two thirds of conventional iterations can be saved), while maintaining the same recovery performance. The FPOCS can obtain faster and better performance than FISTA for relatively cleaner data but will get slower and worse performance than FISTA, which becomes a reference to decide which algorithm to use in practice according the noise level in the seismic data. The seislet transform based CS approach can achieve obviously better data recovery results than f−k transform based scenarios, considering both signal-to-noise ratio (SNR), local similarity comparison, and visual observation, because of a much sparser structure in the seislet transform domain. We have used both synthetic and field data examples to demonstrate the superior performance of the proposed seislet-based FPOCS approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.