Abstract

Conventional request-grant based non-orthogonal multiple access (NOMA) incurs tremendous overhead and high latency. To enable grant-free access in NOMA systems, user activity detection (UAD) is essential. In this paper, we investigate compressive sensing (CS) aided UAD, by utilizing the property of quasi-time-invariant channel tap delays as the prior information. This does not require any prior knowledge of the number of active users like the previous approaches, and therefore is more practical. Two UAD algorithms are proposed, which are referred to as gradient based and time-invariant channel tap delays assisted CS (g-TIDCS) and mean value based and TIDCS (m-TIDCS), respectively. They achieve much higher UAD accuracy than the previous work at low signal-to-noise ratio (SNR). Based on the UAD results, we also propose a low-complexity CS based channel estimation scheme, which achieves higher accuracy than the previous channel estimation approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call