Abstract

Pristine and (SiC+Te)-added MgB2 powders, green and spark plasma sintered (SPS) compacts were investigated from the viewpoint of quasi-static and dynamic (Split-Hopkinson Pressure Bar, SHPB) compressive mechanical properties The amount of the additive (SiC+Te) was selected to be the optimum one for maximization of the superconducting functional parameters. Pristine and added MgB2 show very similar compressive parameters (tan δ, fracture strength, Vickers hardness, others) and fragment size in the SHPB test. However, for the bulk SPSed samples the ratio of intergranular to transgranular fracturing changes, the first one being stronger in the added sample. This is reflected in the quasi-static KIC that is higher for the added sample. Despite this result, sintered samples are brittle and have roughly similar fragmentation behavior as for brittle engineering ceramics. In the fragmentation process, the composite nature of our samples should be considered with a special focus on MgB2 blocks (colonies) that show the major contribution to fracturing. The Glenn-Chudnovsky model of fracturing under dynamic load provides the closest values to our experimental fragment size data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call