Abstract

Porous bioactive materials were widely used in orthopedic implant fields because of their excellent mechanical properties and porous spaces. However, most porous types are predominantly stacked in two-dimensional configurations, which significantly limits their mechanical property range and adversely affects the modulus matching between the porous implants and surrounding bone tissues. Hence, various lattice structures were prepared using 3D printing technology with bioactive materials, and characterized by mechanical and biological tests. Numerical simulations were conducted to analyze the effect of relative density and geometric parameters on the equivalent compressive properties of the lattice structures. The results showed that the lattice structure exhibited a broad elastic modulus range, which can be adjusted to align with the mechanical properties of human cortical and cancellous bones, thereby helping to mitigate stress shielding in orthopedic implants. The biocompatibility of the 3D-printed solid materials was assessed in vitro using a cell counting assay kit-8 (CCK-8). The results indicated that poly-ether-ether-ketone (PEEK), carbon fiber reinforced PEEK (CFR/PEEK), nylon, and titanium (Ti) alloy all exhibited good biocompatibility, with no significant differences observed among the four materials. This study further enhances the understanding of bioactive lattice structures in the biomedical field and offers new possibilities for orthopedic repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.