Abstract

We propose a novel multi-spectral imaging method based on compressive sensing (CS). In CS theory, the enhancement of signal sparsity is important for accurate signal reconstruction. The main novelty of the proposed method is the employment of a self-correlation of an image, that is a local intensity similarity and multi-spectral correlation, to enhance the sparsity of the multi-spectral image to be recovered. Local intensity similarity, which is based on the concept that spatial changes in intensity are likely to be similar within local regions, contributes to sparsity enhancement. Furthermore, we exploit multi-spectral correlation to improve the sparsity of the multi-spectral components to be recovered. In order to simultaneously exploit different types of characteristics (i.e., local intensity similarity and multi-spectral correlation) for representing a signal as sufficiently sparse, we introduce a hierarchical joint sparsity model in the CS image recovery process. Our experiments show that the use of a self-correlation significantly improves the performance of multi-spectral image reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.