Abstract

This work presents the experimental characterization and theoretical modeling of composite elastic-porous metal materials (C-EPMM). C-EPMM is a novel porous metallic damping material made of wire mesh and wire helix. A series of quasi-static compressive experiments were carried out to investigate the stiffness and energy absorption ability of the C-EPMM with different mass ratios. The experimental results show that the mass ratios can significantly affect the stiffness and loss factor of C-EPMM. To efficiently predict the nonlinear mechanical properties of the C-EPMM a theoretical model of C-EPMM was proposed for the first time, the model was based on the manufacturing process. A comparison between the predicted data and the experimental data was conducted. The results show that the theoretical model can accurately predict the mechanical performance of C-EPMM. The conclusions derived from this work can provide a new method for adjusting the mechanical performance of EPMM in applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.