Abstract
The mechanical behavior of nanoscale Al–TiN multilayered composites was studied using micropillar compression experiments, which were compared with previously performed nanoindentation experiments, and the microstructure was investigated using scanning and transmission electron microscopy. It was found that at extremely small layer thicknesses (<5 nm) the nanoscale multilayers acquire remarkable hardness (∼6 GPa), high flow strengths (∼4.5 GPa maximum) and high compressive deformability (5–7% plastic strain). These high strengths were accompanied by extraordinarily high strain-hardening rates in the Al layers, which were of the order of 16–35 GPa (∼E/4–E/2) in “regime II” of the stress–strain curve of the compression tests in the 2–4 nm layered films and 5–9 GPa in the Al-18 nm–TiN-2 nm layered films, where Al layers deform plastically and TiN layers are deformed elastically. The high strengths and high work-hardening rates are discussed and analyzed using the concepts of dislocation motion and interactions within the confined nanoscale Al layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.