Abstract

The failure process in uniaxially-aligned 60% fibre volume fraction glass fibre-epoxide compressive specimens strained parallel to the fibre axis was investigated at atmospheric and superposed hydrostatic pressures up to 300 MN m−2. The atmospheric strength was about 1.15 GN m−2 (about 20% less than the tensile) and strongly pressure dependent, rising to over 2.2 GN m−2 at 300 MM m−2 pressure, i.e. by about 30% per 100 MN m−2 of superposed pressure. The corresponding figure is 22% if the maximum shear stress and not the maximum principal compressive stress is considered. This is incompatible with atmospheric compressive failure mechanisms controlled by weakly dependent or pressure independent processes, e.g. shear of the fibres. The results also could not be satisfactorily interpreted in terms of microbuckling of individual fibres. Kinking, involving buckling of fibre bundles was proposed as the mechanism of failure propagation, but the critical stage (for this glass reinforced plastic) is suggested as being yielding of the matrix, which initially restrains surface bundles from buckling. A strong pressure dependent failure criterion, about 25% increase per 100 MN m−2, was derived by modifying the Swift-Piggott analysis of deformation of initially curved fibres. It is postulated that it is the axial compression that causes bundle curvature. Other systems, particularly carbon fibre-reinforced plastic, in which there appears to be a transition in the critical stage of failure from bundle buckling to matrix yielding with increasing superposed pressure, are also considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.