Abstract

The aim of this study was to provide the basic design parameters for developing logging residue compression machines by investigating compressive deformation characteristics of different types of logging residues. To achieve these objectives, Pinus rigida, Pinus koraensis and Quercus mongolica were selected as specimens, and compression-deformation tests by UTM(universial testing machine) were conducted. The experimental dataset were used to set up the model based on the compression-deformation ratio in the form of exponential function. The results showed that stress coefficient in terms of mechanical properties of logging residues was decreased, whereas strain coefficient tended to be increased as the number of compression increased at target density of and . The model presented that the required stress was decreased as the number of compression increased, and the stress growth rate was swelled compared to the change of the deformation rate. Therefore, it showed that proper initial compression force was a significant variable in order to achieve the target density of logging residue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.