Abstract

Abstract An AZ31magneium alloy was processed through accumulative back extrusion (ABE) process at 280 °C up to six passes. Compressive deformation behavior of the processed materials was studied by employing uniaxial compression tests at room temperature. The results indicated that grains of 80 nm to 1 µm size were formed during accumulative back extrusion, where the mean grain size of the experimental material was reduced by applying successive ABE passes. A deformation texture characterizing with the basal plane mainly lie inclined to the deformation axis was developed. Compressive yield and maximum compressive strengths were measured to increase by applying successive extrusion passes, while the strain-to-fracture dropped. The evolution of mechanical properties was explained relying on the grain refinement effect as well as texture change. It was described that the share of different deformation mechanisms and developing of shearing regions near the grain boundaries may influence the deformation behavior of the ultrafine/nano grained AZ31 alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.