Abstract
This paper presents an efficient approach for collecting data in mobile wireless sensor networks which is specifically designed to gather real-time information of bikers in a bike race. The approach employs the recent HIKOB sensors for tracking the GPS position of each bike and the problem herein addressed is to transmit this information to a collector for visualization or other processing. Our approach exploits the inherent correlation between biker motions and aggregates GPS data at sensors using compressive sensing (CS) techniques. We enforce, instead of the standard signal sparsity, a spatial sparsity prior on biker motion because of the grouping behavior (peloton) in bike races. The spatial sparsity is modeled by a graphical model and the CS-based data aggregation problem is solved using linear programming. Our approach, integrated in a multi-round opportunistic routing protocol, is validated on data generated by a bike race simulator using trajectories of motorbikes obtained from a real race, the Paris-Tours 2013.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.