Abstract

Laser-scanning confocal microscopy serves as a critical instrument for microscopic research in biology. However, it suffers from low imaging speed and high phototoxicity. Here we build a novel deep compressive confocal microscope, which employs a digital micromirror device as a coding mask for single-pixel imaging and a pinhole for confocal microscopic imaging respectively. Combined with a deep learning reconstruction algorithm, our system is able to achieve high-quality confocal microscopic imaging with low phototoxicity. Our imaging experiments with fluorescent microspheres demonstrate its capability of achieving single-pixel confocal imaging with a sampling ratio of only approximately 0.03% in specific sparse scenarios. Moreover, the deep compressive confocal microscope allows single-pixel imaging at the single-photon level, thus reducing the excitation light power requirement for confocal imaging and suppressing the phototoxicity. We believe that our system has great potential for long-duration and high-speed microscopic imaging of living cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.