Abstract

Loose beds of hollow fly ash particles (cenospheres) were pressure infiltrated with A356 alloy melt to fabricate metal-matrix syntactic foam, using applied pressure up to 275 kPa. The volume fractions of cenospheres in the composites were in the range of 20–65%. The processing variables included melt temperature, gas pressure and particles size of fly ash. The effect of these processing variables on the microstructure and compressive properties of the synthesized composites is characterized. Compressive tests performed on these metal-matrix composites containing different volume fractions of hollow fly ash particles showed that their yield stress, Young's modulus, and plateau stress increase with an increase in the density. Variations in the compressive properties of the composites in the present study were compared with other foam materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.