Abstract

We propose a novel blind image deconvolution (BID) regularization framework for compressive sensing (CS) based imaging systems capturing blurred images. The proposed framework relies on a constrained optimization technique, which is solved by a sequence of unconstrained sub-problems, and allows the incorporation of existing CS reconstruction algorithms in compressive BID problems. As an example, a non-convex lp quasi-norm with is employed as a regularization term for the image, while a simultaneous auto-regressive regularization term is selected for the blur. Nevertheless, the proposed approach is very general and it can be easily adapted to other state-of-the-art BID schemes that utilize different, application specific, image/blur regularization terms. Experimental results, obtained with simulations using blurred synthetic images and real passive millimeter-wave images, show the feasibility of the proposed method and its advantages over existing approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.