Abstract

The deformation behaviour of the new high performance polymer fibres, poly(p-phenylene benzobisoxazole) (PBO) and polypyridobisimidazole (PIPD) and their adhesion to an epoxy composite matrix have been investigated. Both fibres give well defined Raman spectra, and the deformation micromechanics of PBO and PIPD single fibres and composites were studied from stress induced Raman band shifts. Single fibre stress-strain curves were determined in both tension and compression, thus providing an estimate of the compressive strength of these fibres. It was found that the PIPD fibre has a higher compressive strength (~1 GPa) than PBO (~0·3 GPa) and other high performance polymer fibres, because hydrogen bond formation is possible between PIPD molecules. It has been shown that when PBO and PIPD fibres are incorporated into an epoxy resin matrix, the resulting composites show very different interfacial failure mechanisms. The fibre strain distribution in the PBO-epoxy composites follows that predicted by the full bonding, shear lag model at low matrix strains, but deviations occur at higher matrix strains due to debonding at the fibre/matrix interface. For PIPD-epoxy composites, however, no debonding was observed before fibre fragmentation, indicating better adhesion than for PBO as a result of reactive groups on the PIPD fibre surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call