Abstract
In this paper, compressive behavior of electrodeposited nano-crystalline (nc) Ni at various temperatures and strain rates is studied using a low temperature mechanic test system. Plastic deformation mechanisms of nc Ni caused by compression are characterized by the strain rate sensitivity index, the activation volume, and examined by scanning electron microscopy and high resolution transmission electron microscopic analysis. Results show that at low temperatures, the plastic deformation of nc Ni is mainly dominated by grain boundary accommodated dislocations. In other words, during plastic deformation of nc Ni at low temperatures, the intrinsic dislocation at the grain boundary bends up and expands without obstacles to the opposite grain boundary in the inner grain dislocation-free zone, until the occurrence of similar cutting forest-dislocation behavior appearing at opposite grain boundary. Moreover, the residual dislocations in the grain boundary bending out during plastic deformation could increase the strain compatibility and decrease the stress concentration. At room temperature, the plastic deformation mechanism of nc Ni is controlled by the deformation of grain boundary accommodated dislocations and grain slipping/rotating. Based on the above analyses, differences in compressive behavior of nc Ni at various temperatures and strain rates can be revealed by the correlation of deformation mechanisms of grain boundary accommodated dislocations and residual dislocation movement, temperature and defects in nc Ni.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.