Abstract

The compressive stress of concrete is used as a design variable for reinforced concrete structures in design standards. However, as the performance-based design is being used with increasing varieties and strengths of concrete and reinforcement bars, mechanical properties other than the compressive stress of concrete are sometimes used as major design variables. In particular, the evaluation of the mechanical properties of concrete is crucial when using fiber-reinforced concrete. Studies of high volume fractions in established compressive behavior prediction equations are insufficient compared to studies of conventional fiber-reinforced concrete. Furthermore, existing prediction equations for the mechanical properties of high-performance fiber-reinforced cementitious composite and high-strength concrete have limitations in terms of the strength and characteristics of contained fibers (diameter, length, volume fraction) even though the stress-strain relationship is determined by these factors. Therefore, this study developed a high-performance slurry-infiltrated fiber-reinforced cementitious composite that could prevent the fiber ball phenomenon, a disadvantage of conventional fiber-reinforced concrete, and maximize the fiber volume fraction. Then, the behavior characteristics under compressive stress were analyzed for fiber volume fractions of 4%, 5%, and 6%.

Highlights

  • Conventional concrete, which is commonly used as a construction material, does not have an adequate resistance level in terms of collisions or explosive loads; concerns are arising about human casualties from the brittle fracturing when reinforced concrete (RC) structures explode [1,2].With the increasing threat of global terrorism, as well as safety concerns, there is a need for reinforced concrete structures that can withstand the sudden occurrence of dynamic loads like terrorist impact and blast

  • We examined established prediction equations and found that studies of high volume fractions remained insufficient compared to studies of conventional fiber-reinforced concrete

  • ~10% lower compressive stress was ~66 MPa; this was ~12% and ~21% lower than that for fiber volume fractions of than that for the fiber volume fraction of 6%

Read more

Summary

Introduction

Conventional concrete, which is commonly used as a construction material, does not have an adequate resistance level in terms of collisions or explosive loads; concerns are arising about human casualties from the brittle fracturing when reinforced concrete (RC) structures explode [1,2]. With the increasing threat of global terrorism, as well as safety concerns, there is a need for reinforced concrete structures that can withstand the sudden occurrence of dynamic loads like terrorist impact and blast. Fiber-reinforced concrete is being popular due to its greater impact resistance properties [3,4]. The possibility of high-performance fiber-reinforced cementitious composites (HPFRCCs) satisfying blast resistance design requirements for external blasts more effectively than conventionally reinforced concrete. The HPFRCCs have been expected to improve such drawbacks of concrete and improve

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.