Abstract

Compressive anisotropy of extruded Mg–2Dy–0.5Zn (mole fraction, %) alloy sheet was investigated. The alloy sheet was mainly composed of α-Mg, (Mg, Zn)xDy phase and a large number of long period stacking ordered (LPSO) phases distributed along the extrusion direction. The compressive experimental results show that the alloy sheet exhibits an obvious compressive anisotropy. The compressive strength of the specimen in the extrusion direction (ED) is higher than those of the specimens in the transverse direction (TD) and 45° inclined to the extrusion direction. The compressive yield strength (CYS), ultimate compressive strength (UCS) and compressive strain of the specimen in the ED are 274.65 MPa, 518.94 MPa and 12.93%, respectively. The compressive anisotropy is mainly attributed to the distribution of LPSO phase and formation of fiber texture in the deformed grains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call