Abstract

The presented work compares the mechanical behavior from standard unconfined compressive strength and indirect tensile strength tests of natural sandstone and artificial sand-based specimens created by 3D additive manufacturing. Three natural sandstones of varying strength and stiffness were tested to capture a wide range of behavior for comparison with the 3D-printed specimens. Sand grains with furan and silicate binders, as well as, ceramic beads with silicate binder were 3D-printed by commercial suppliers. The tensile and compressive strength, the stiffness, the crack initiation and the crack damage thresholds and the strain behavior were examined to determine if the mechanical behavior of the 3D-printed specimens is similar to natural sandstones. The Sand-Furan 3D-prints behaved the closest to the weak natural sandstone. The compressive strength-to-stiffness ratio, also known as the modulus ratio, and the compressive-to-tensile strength ratio of the 3D-printed Sand-Furan specimens were found to be similar to the natural sandstones tested in this study and literature values. The failed specimens composed of ceramic beads with silicate binder, both in compression and tension, showed fracture growth not commonly observed in natural specimens. The other 3D-printed specimens generally fractured in a similar manner to natural specimens, although several of the quartz sand with furan binder specimens showed fracturing behavior similar to high porosity natural specimens. Over all, using the commercially available quartz sand with furan binder 3D-print materials showed promise to be able to replicate natural rock specimen behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call