Abstract
Complex plasmas consist of electrons, ions and charged microparticles, with typical charge-to-mass ratios 1:10−5:10−13. The interest in these systems has grown explosively, because they can be investigated at the kinetic level (the microparticles). However, on Earth the supporting forces (against gravity) are of the same order as the electrostatic interparticle forces—and hence only strongly compressed systems can be investigated. Under microgravity conditions these “body forces” are a factor 102 smaller which allows the experimental investigation of weakly compressed three-dimensional complex plasmas. One way to study these systems is by the controlled excitation of low-frequency compressional waves. The first such experiments, conducted with the PKE-Nefedov laboratory on the International Space Station is reported. The waves were excited by modulating the voltage on the rf electrodes. By varying the modulation frequency the dispersion relation was measured. The results are compared with existing theoretical models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.