Abstract

The competing hypotheses for gas hydrate formation at the particle scale in sediments describe processes of pore‐filling, frame‐building, or cementation. New measurements of compressional (VP) and shear wave (VS) velocities in fine‐grained sands subjected to low confinement and monitored during formation of tetrahydrofuran hydrate indicate that hydrate nucleates in the pore space (presumably at grain boundaries) and grows with limited impact on the sediment shear stiffness, VP, and VS until crystals begin to interact with the granular skeleton at ∼40% hydrate concentration. VS increases significantly more than VP at higher hydrate concentrations, reflecting larger changes in the specimen's shear stiffness than its bulk stiffness. The results indicate that seismic velocities and/or their ratio (VP/VS) have limited capability for locating hydrate or constraining hydrate concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.