Abstract

AbstractWe have conducted a series of experiments designed to investigate elastic and electromagnetic (EM) velocity anisotropy associated with a preferentially aligned fracture system on a temperate valley glacier in south-central Alaska, USA. Measurements include a three-dimensional compressional wave (P-wave) seismic reflection survey conducted over a 300 m x 300 m survey patch, with uniform source grid and static checkerboard receiver pattern. Additionally, we acquired a multi-azimuth, multi-offset, polarimetric ground-penetrating radar (GPR) reflection experiment in a wagon-wheel geometry with 94° of azimuthal coverage. Results show azimuthal variation in the P-wave normal-moveout velocity of >3% (3765 and 3630 m s–1 in the fast and slow directions respectively) and difference of nearly 5% between the fast (0.164 m ns–1) and slow (0.156 m ns–1) EM velocities. Fracture orientations estimated from the GPR and seismic velocity data are consistent and indicate a preferred fracture orientation that is 30-45° oblique to glacier flow; these measurements agree with borehole observations. Anisotropic analysis of the polarimetric data gives a single volumetric water content estimate of 0.73 ±0.11%. We conclude that meaningful estimates of physical properties in glaciers based on EM or seismic velocity measurements require collecting data such that the presence of anisotropy can be evaluated and an anisotropic analysis employed when necessary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call