Abstract

Findings of a study of stress relaxation behaviour of hydrogenated nitrile butadiene rubber (HNBR) at nominal compressive strains up to 0.4 and temperatures above and below the glass transition temperature Tg are reported. Two formulations of a model HNBR with 36% acrylonitrile content and carbon black (CB) loading of 0 and 50 phr were investigated. The relaxation function of HNBR is found to be independent of strain at temperatures right above the Tg or at times longer than 10−3 s for the deformations employed. CB imparts higher long-term stiffness and also larger relaxation strength at times longer than 10−4 s to the HNBR, but it does not affect the relaxation behaviour of the rubber in the time span from 10−3 – 104 s. In addition, the relationship between the strain energy function of HNBR and temperature is demonstrated to have a complex concave-downward shape which is affected by two competing contributions of entropy elasticity and the stress relaxation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.