Abstract

Crushing behaviors of luffa sponges were studied through mechanical experiments. Controlled by four-order hierarchical and anisotropic structures, luffa sponges exhibit anisotropic responses along axial, radial, and circumferential directions. The ultra-thin but stiff inner surface layer dominates the crushing behavior, endowing the axially compressed luffa cylinder with structural integrity, enhancing the elastic deformation and yielding strength. In radial, circumferential, and lateral compressions, after removing the inner surface layer, luffa sponges are compliant and have large quasi-linear deformation before densification, without a plateau characterized by yielding and deformation. Immersed into water, crushed luffa sponge cylinders recover their geometry completely. However, compression strength is only partially restored. Gradual damage of the inner surface layer in water immersing/drying cycles greatly weakens the compression strength. In the case of removal of the inner surface layer, crushed luffa sponge cylinders completely restore their quasi-linear deformation ability during the water immersing/drying cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.