Abstract

Although compressed sensing theory has many advantages in image reconstruction, its reconstruction and sampling time is very long. Fast reconstruction of high-quality images at low measurement rates is the direction of the effort. Compressed sensing based on deep learning provides an effective solution for this. In this study, we propose an attention-based compression reconstruction mechanism (ACRM). The coordinated self-attention module (CSAM) is designed to be embedded in the main network consisting of convolutional blocks and utilizes the global space and channels to focus on key information and ignore irrelevant information. An adaptive Gaussian filter is proposed to solve the loss of multi-frequency components caused by global average pooling in the CSAM, effectively supplementing the network with different frequency information at different measurement rates. Finally, inspired by the basic idea of the attention mechanism, an improved loss function with attention mechanism (AMLoss) is proposed. Extensive experiments show that the ACRM outperforms most compression reconstruction algorithms at low measurement rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.