Abstract

This paper is concerned with the reduction of a unitary matrix U to CMV-like shape. A Lanczos-type algorithm is presented which carries out the reduction by computing the block tridiagonal form of the Hermitian part of U, i.e., of the matrix U+UH. By elaborating on the Lanczos approach we also propose an alternative algorithm using elementary matrices which is numerically stable. If U is rank-structured then the same property holds for its Hermitian part and, therefore, the block tridiagonalization process can be performed using the rank-structured matrix technology with reduced complexity. Our interest in the CMV-like reduction is motivated by the unitary and almost unitary eigenvalue problem. In this respect, finally, we discuss the application of the CMV-like reduction for the design of fast companion eigensolvers based on the customary QR iteration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.