Abstract

Electron repulsion integral tensor has ubiquitous applications in electronic structure computations. In this work, we propose an algorithm which compresses the electron repulsion tensor into the tensor hypercontraction format with O(nN2log⁡N) computational cost, where N is the number of orbital functions and n is the number of spatial grid points that the discretization of each orbital function has. The algorithm is based on a novel strategy of density fitting using a selection of a subset of spatial grid points to approximate the pair products of orbital functions on the whole domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.