Abstract

Summary Clay soils have their structural links according to their geological conditions. Compression increases when the soil structural lines are destructed. Even if the density of the soils of distructed structure reaches the density of natural soils, though they get deformed differently under loading. Sometimes it is necessary to have equivalent compression of the soils of destructed and natural structure in construction. The article presents mathematical dependency on how to count a porosity factor of the soils of destructed structure, with its help relative deformations under a given loading come up with relative deformation of natural soils, using dependency of compression porosity factor of structurally rigid soils upon loading in a semi-logarithmic scale. Experimental research into Lithuanian limnoglacial clay soils has showed that increase in the assessment of the initial porosity factor is followed by an increase in difference between the compression of non-destructed and destructed soils. Experi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.