Abstract

For practical applications of copper selenide (Cu2Se) thermoelectric (TE) materials with liquid-like behavior, it is essential to determine the structure-property relations as a function of temperature. Here, we investigate β-Cu2Se structure evolution during uniaxial compression over the temperature range of 400-1000 K using molecular dynamics simulations. We find that at temperatures above 800 K, Cu2Se exhibits poor stability with breaking order that is described as a liquid-like or hybrid structure comprising a rigid Se sublattice and mobile Cu ions. A uniaxial load causes accumulated structural heterogeneity that is alleviated by diffusion-induced accommodation of local deformations. With increasing strain, the deformation mode changes into a combination of compression and shear, accompanied by restructuring in terms of twinning. Interestingly, in addition to a plastic behavior rarely found in inorganic semiconductors, we find that higher temperature promotes deformation twinning in liquid-like Cu2Se, showing the role of thermal instability, including Cu diffusion, in structural adaptation and mechanical modulation. These findings reveal the micromechanism of hybrid structural evolution as well as performance tuning through twinning, which provides a theoretical guide toward advanced Cu2Se TE materials design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.