Abstract

Cochlear compression contributes significantly to sharp frequency tuning and wide dynamic range in audition. The physiological mechanism underlying the compression has been traced to the outer hair cell function. Electric stimulation of the auditory nerve in cochlear implants bypasses this compression function, serving as a research tool to delineate the peripheral and central contributions to auditory functions. In this talk, I will compare psychophysical performance between acoustic and electric hearing in intensity, frequency, and time processing, and pay particular attention to the data that demonstrate the role of cochlear compression. Examples include both the cochlear-implant listeners’ extremely narrow dynamic range and poor pitch discrimination and their exquisite sensitivity to changes in amplitude and phase. A unified view on the complementary contributions of cochlear compression and central expansion will be developed to account for Webers’ law and Stevens power law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call