Abstract
To obtain a lightweight and high-strength wood sandwich structure, a wooden lattice sandwich cell element was designed in combination with a pyramid-type structure. After inserting glue to prepare the cell unit, the influence of panel thickness and core diameter on the unit cell force was analyzed and compared under the condition of flat pressure. Under the condition of flat pressure, the specific strength of the unit cell was higher than that of the specific strength of the composition material, and the unit cell may be regarded as a structure with high specific strength. Theoretical predictions, simulation analysis, and experimental tests demonstrated that the structure compressive capacity depended on the diameter of the core when the core length was set. The larger the diameter of the core is, the stronger the bearing capacity of the unit cell will be. When the diameter of the core is constant, the longer the core length is, the weaker the bearing capacity of the unit cell will be. The simulation analysis was in agreement with the experimental test results, indicating that the destruction of the structure was mainly caused by the failure of the core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.