Abstract
Abstract In wood science and technology, researchers increasingly focus on the additive manufacturing in different aspects through assembly, mechanical, and physical characterization of the printed parts. One of the main parameters influence the wood features is the inhomogeneity of cellular structure. The effect of dislocation on the compression behavior was evaluated over the wood-inspired cellular structure. The 4.4 × 4.4 mm cross-cut–sized cell (0.8 mm cell wall thickness and 2.8 mm lumen diameter) with 10 mm thickness was arrayed by 6 columns and 3 rows to design the control model. The middle row was 0.8, 1.6, and 2.4 mm dislocated to obtain irregular models. Objects were fabricated through the deposition of acrylonitrile butadiene styrene filament using DaVinci 1.0 all in one three-dimensional printer. The effect of printing orientation (vertical and horizontal) on compression behavior was also figured out. The compression test was performed to obtain the load–deformation behavior of samples. According to the results, the horizontally printed samples presented better performance. Furthermore, horizontal alignment, rectilinear infill type, 90 % infill density, and 0.2 mm layer height combination presented the highest (5719 N) load-carrying capacity. The statistical analysis (P < 0.05) figured out that cell dislocation has significant influences on mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.