Abstract

In an effort to contribute to the ongoing development of ASTM standards for additively manufactured metal lattice specimens, particularly within the field of medicine, the compressive and tensile mechanical properties of biomimetic lattice structures produced by laser powder bed fusion (L-PBF) using Ti-6Al-4V feedstock powder were investigated in this research. The geometries and porosities of the lattice structures were designed to facilitate internal bone growth and prevent stress shielding. A thin strut thickness of 200 µm is utilized for these lattices to mimic human cancellous bone. In addition to a thin strut size, two different strut geometries were utilized (cubic and body-centered cubic), along with four different pore sizes (400, 500, 600, and 900 µm, representing 40–90% porosity in a 10 mm cube). A 10 mm3 cube was used for compression testing and an experimental pin-loaded design was implemented for tensile testing. The failure mode for each specimen was examined using scanning electron microscopy (SEM). Lattice structures were compared to the mechanical properties of human cancellous bone. It was found that the elastic modulus of human cancellous bone (10–900 MPa) could be matched for both the tensile (92.7–129.6 MPa) and compressive (185.2–996.1 MPa) elastic modulus of cubic and body-centered cubic lattices. Body-centered cubic lattices exhibited higher compressive properties over cubic, whereas cubic lattices exhibited superior tensile properties. The experimental tensile specimen showed reacquiring failures close to the grips, indicating that a different tensile design may be required for consistent data acquisition in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call