Abstract
ABSTRACTYeast cells were immobilized on calcium alginate beads prepared using different calcium concentrations. The compression properties of the immobilized beads (e.g., softness index and retardation time for compression) were strongly affected by the calcium concentration. The effects of the bead properties on filtration characteristics, such as cake porosity, specific cake filtration resistance, cake compression creeping effect and cake compressibility, were analysed using a dead-end filtration system. The filtration curve of yeast-immobilized beads had an “S” shape, similar to that of soft gel particles. The cake compression behaviour and variation in cake properties were directly reflected on the curve trend. The Voigt in the series model was employed to describe variation in cake porosity with time during a compression. The yeast immobilization increased the bead softness; therefore, the porosity of a cake formed by yeast-immobilized beads was lower than that formed by pure calcium alginate beads. The cakes formed by yeast-immobilized beads possessed a high compressibility of approximately 1.0 and a high softness index of approximately 1.5. The beads prepared using lower calcium concentrations had higher softness, shorter retardation times for compression, higher cake compressibility, lower cake porosity and higher specific cake filtration resistance. The results demonstrated that immobilizing yeast cells on calcium alginate beads is beneficial for retaining higher yeast activity than that of freely suspended yeast. However, the activity levels of yeast immobilized using different calcium concentrations were nearly the same after 3 h. Therefore, using high concentrations of calcium for yeast immobilization is beneficial for improving yeast activity and filtration characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.