Abstract
Given a trained deep graph convolution network (GCN), how can we effectively compress it into a compact network without significant loss of accuracy? Compressing a trained deep GCN into a compact GCN is of great importance for implementing the model to environments such as mobile or embedded systems, which have limited computing resources. However, previous works for compressing deep GCNs do not consider the multi-hop aggregation of the deep GCNs, though it is the main purpose for their multiple GCN layers. In this work, we propose MustaD (Multi-staged knowledge Distillation), a novel approach for compressing deep GCNs to single-layered GCNs through multi-staged knowledge distillation (KD). MustaD distills the knowledge of 1) the aggregation from multiple GCN layers as well as 2) task prediction while preserving the multi-hop feature aggregation of deep GCNs by a single effective layer. Extensive experiments on four real-world datasets show that MustaD provides the state-of-the-art performance compared to other KD based methods. Specifically, MustaD presents up to 4.21%p improvement of accuracy compared to the second-best KD models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.