Abstract

Abstract The role of supersonic turbulence in structuring the interstellar medium (ISM) remains an unsettled question. Here, this problem is investigated using a new exact law of compressible isothermal hydrodynamic turbulence, which involves two-point correlations in physical space. The new law is shown to have a compact expression that contains a single flux term reminiscent of the incompressible case and a source term with a simple expression whose sign is given by the divergence of the velocity. The law is then used to investigate the properties of such a turbulence at integral Mach number 4 produced by a massive numerical simulation with a grid resolution of points. The flux (resp. source) term was found to have positive (resp. negative) contribution to the total energy cascade rate, which is interpreted as a direct cascade amplified by compression, while their sum is constant in the inertial range. Using a local (in space) analysis it is shown that the source is mainly driven by filamentary structures in which the flux is negligible. Taking positive defined correlations reveals the existence of different turbulent regimes separated by the sonic scale, which determines the scale over which the nonnegligible source modifies the scaling of the flux. Our study provides new insight into the dynamics and structures of supersonic interstellar turbulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.