Abstract

We present numerical simulations and explore scalings and anisotropy of compressible magnetohydrodynamic (MHD) turbulence. Our study covers both gas pressure dominated (high beta) and magnetically dominated (low beta) plasmas at different Mach numbers. In addition, we present results for superAlfvenic turbulence and discuss in what way it is similar to the subAlfvenic turbulence. We describe a technique of separating different magnetohydrodynamic (MHD) modes (slow, fast and Alfven) and apply it to our simulations. We show that, for both high and low beta cases, Alfven and slow modes reveal the Kolmogorov spectrum (index=-5/3) and scale-dependent Goldreich-Sridhar anisotropy, while fast modes exhibit spectrum with index=-3/2 and isotropy. We discuss the statistics of density fluctuations arising from MHD turbulence at different regimes. Our findings entail numerous astrophysical implications ranging from cosmic ray propagation to gamma ray bursts and star formation. In particular, we show that the rapid decay of turbulence reported by earlier researchers is not related to compressibility and mode coupling in MHD turbulence. In addition, we show that magnetic field enhancements and density enhancements are marginally correlated. Addressing the density structure of partially ionized interstellar gas on AU scales, we show that the new regime of MHD turbulence that we earlier reported for incompressible flows persists for compressible turbulence and therefore may provide an explanation for those mysterious structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.