Abstract

The interaction between magnetic fields and convection is interesting both because of its astrophysical importance and because the nonlinear Lorentz force leads to an especially rich variety of behaviour. We present several sets of computational results for magnetoconvection in a square box, with periodic lateral boundary conditions, that show transitions from steady convection with an ordered planform through a regime with intermittent bursts to complicated spatiotemporal behaviour. The constraints imposed by the square lattice are relaxed as the aspect ratio is increased. In wide boxes we find a new regime, in which regions with strong fields are separated from regions with vigorous convection. We show also how considerations of symmetry and associated group theory can be used to explain the nature of these transitions and the sequence in which the relevant bifurcations occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.