Abstract

A sustainable nanomaterial, cellulose nanofibril (CNF) was used to prepare aerogel sorbents to remove various contaminants in wastewater. A mussel-inspired coating strategy was used to introduce polydopamine onto the surface of CNFs, which were cross-linked with polyethylenimine (PEI) to form the aerogels. The synthetic procedure was optimized to achieve a minimal consumption of raw materials to produce a robust porous structure. The aerogels possessed a low density (25.0 mg/cm3), high porosity (98.5%) and shape recovery in air and water. Adsorption studies were conducted on two representative contaminants, Cu (II) and methyl orange (MO). The kinetic data obeyed the pseudo 2nd order kinetic model and the mechanism of adsorption could be described by the intra-particle diffusion model. The Langmuir model fitting yielded a maximum adsorption capacity of 103.5 mg/g and 265.9 mg/g for Cu (II) and MO, respectively. The effects of pH on the adsorption performance were evaluated, confirming that the aerogels can maintain a high adsorption capacity over a wide pH range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.