Abstract
Heteroatom-doped carbon materials have received great attention for applications in electrode materials. However, conventional heteroatom-doping methods sacrifice conductivity, stability, and specific surface area (SSA). Here, the carbon quantum dots (CDs) are used as carriers of N, P, O to form electron-rich regions promoting electron transport without decreasing stability and SSA. The CDs promote the formation of graphitic nitrogen in the composite, which effectively reduces their internal resistance by increasing the dielectric constant. Moreover, the orderly growth of ice crystals generates a unique bridged layer structure under bidirectional freeze-casting in a mixture of GO/CDs/microfibrillated cellulose, which gives the composite super-compressibility. Notably, the optimal sample has a 117% increase in specific capacitance. The CDs also improve wettability and thus reduce the charge transfer resistance giving a large desalination capacity of 32.59 mg g−1 (504 mg L−1 NaCl). This work illustrates the unique role of CDs in improving the electrochemical performance of composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.