Abstract

AbstractHigh-pressure single-crystal X-ray diffraction patterns on five synthetic Mg-Al tourmalines with near end-member compositions [dravite NaMg3Al6Si6O18(BO3)3(OH)3OH, K-dravite KMg3Al6Si6O18(BO3)3(OH)3OH, magnesio-foitite □(Mg2Al)Al6Si6O18(BO3)3(OH)3OH, oxy-uvite CaMg3Al6Si6O18(BO3)3(OH)3O, and olenite NaAl3Al6Si6O18(BO3)3O3OH, where □ represents an X-site vacancy] were collected to 60 GPa at 300 K using a diamond-anvil cell and synchrotron radiation. No phase transitions were observed for any of the investigated compositions. The refined unit-cell parameters were used to constrain third-order Birch-Murnaghan pressure-volume equation of states with the following isothermal bulk moduli (K0 in GPa) and corresponding pressure derivatives (K0′ = ∂K0/∂P)T: dravite K0 = 97(6), K0′ = 5.0(5); K-dravite K0 = 109(4), K0′ = 4.3(2); oxy-uvite K0 = 110(2), K0′ = 4.1(1); magnesio-foitite K0 = 116(2), K0′ = 3.5(1); olenite K0 = 116(6), K0′ = 4.7(4). Each tour-maline exhibits highly anisotropic behavior under compression, with the c axis 2.8–3.6 times more compressible than the a axis at ambient conditions. This anisotropy decreases strongly with increasing pressure and the c axis is onlŷ14% more compressible than the a axis near 60 GPa. The octahedral Y- and Z-sites' composition exerts a primary control on tourmaline's compressibility, whereby Al content is correlated with a decrease in the c-axis compressibility and a corresponding increase in K0 and K0′. Contrary to expectations, the identity of the X-site-occupying ion (Na, K, or Ca) does not have a demonstrable effect on tourmaline's compression curve. The presence of a fully vacant X site in magnesio-foitite results in a decrease of K0′ relative to the alkali and Ca tourmalines. The decrease in K0′ for magnesio-foitite is accounted for by an increase in compressibility along the a axis at high pressure, reflecting increased compression of tourmaline's ring structure in the presence of a vacant X site. This study highlights the utility of synthetic crystals in untangling the effect of composition on tourmaline's compression behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.