Abstract

Photoacoustic computed tomography using an ultrasonic array is an attractive noninvasive imaging modality for many biomedical applications. However, the potentially long data acquisition time of array-based photoacoustic computed tomography—usually due to the required time-multiplexing for multiple laser pulses—decreases its applicability for rapid disease diagnoses and the successive monitoring of physiological functions. Compressed sensing is used to improve the imaging speed of photoacoustic computed tomography by decreasing the amount of acquired data; however, the imaging quality can be limited when fewer measurements are used, as traditional compressed sensing considers only the sparsity of the signals in the imaging process. In this work, an advanced compressed sensing reconstruction framework with a Wiener linear estimation-based Gaussian scale mixture model was developed for limited view photoacoustic computed tomography. In this method, the structure dependencies of signals in the wavelet domain were incorporated into the imaging framework through the Gaussian scale mixture model, and an operator based on the Wiener linear estimation was designed to filter the reconstruction artifacts. Phantom and human forearm imaging were performed to verify the developed method. The results demonstrated that compressed sensing with a Wiener linear estimation-based Gaussian scale mixture model more effectively suppressed the reconstruction artifacts of sparse-sampling photoacoustic computed tomography and recovered photoacoustic images with a higher contrast-to-noise ratio and edge resolution than the traditional compressed sensing method. This work may promote the development of low-cost photoacoustic computed tomography techniques with rapid data acquisition and enhance the performance of photoacoustic computed tomography in various biomedical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.