Abstract

BackgroundMagnetic Resonance Spectroscopic Imaging (MRSI) has wide applicability for non-invasive biochemical assessment in clinical and pre-clinical applications but suffers from long scan times. Compressed sensing (CS) has been successfully applied to clinical 1H MRSI, however a detailed evaluation of CS for conventional chemical shift imaging is lacking. Here we evaluate the performance of CS accelerated MRSI, and specifically apply it to accelerate 23Na-MRSI on mouse hearts in vivo at 9.4 T.MethodsSynthetic phantom data representing a simplified section across a mouse thorax were used to evaluate the fidelity of the CS reconstruction for varying levels of under-sampling, resolution and signal-to-noise ratios (SNR). The amplitude of signals arising from within a compartment, and signal contamination arising from outside the compartment relative to noise-free Fourier-transformed (FT) data were determined. Simulation results were subsequently verified experimentally in phantoms and in three mouse hearts in vivo.ResultsCS reconstructed MRSI data are scaled linearly relative to absolute signal intensities from the fully-sampled FT reconstructed case (R2 > 0.8, p-value < 0.001). Higher acceleration factors resulted in a denoising of the reconstructed spectra, but also in an increased blurring of compartment boundaries, particularly at lower spatial resolutions. Increasing resolution and SNR decreased cross-compartment contamination and yielded signal amplitudes closer to the FT data. Proof-of-concept high-resolution, 3-fold accelerated 23Na-amplitude maps of murine myocardium could be obtained within ~23 mins.ConclusionsRelative signal amplitudes (i.e. metabolite ratios) and absolute quantification of metabolite concentrations can be accurately determined with up to 5-fold under-sampled, CS-reconstructed MRSI. Although this work focused on murine cardiac 23Na-MRSI, the results are equally applicable to other nuclei and tissues (e.g. 1H MRSI in brain). Significant reduction in MRSI scan time will reduce the burden on the subject, increase scanner throughput, and may open new avenues for (pre-) clinical metabolic studies.

Highlights

  • Magnetic Resonance Spectroscopic Imaging (MRSI) has wide applicability for non-invasive biochemical assessment in clinical and pre-clinical applications but suffers from long scan times

  • We present a detailed performance evaluation of the Compressed sensing (CS)-reconstruction developed by Geethanath et al in the context of 1H-MRSI [11]

  • Consistent with previous studies [13], low signal-to-noise ratios (SNR) (i.e. ≤ 8) resulted in an exaggerated noise floor in the CS reconstructed data preventing the reconstruction from converging; these data were excluded from further analysis

Read more

Summary

Introduction

Magnetic Resonance Spectroscopic Imaging (MRSI) has wide applicability for non-invasive biochemical assessment in clinical and pre-clinical applications but suffers from long scan times. Compressed sensing (CS) has been successfully applied to clinical 1H MRSI, a detailed evaluation of CS for conventional chemical shift imaging is lacking. Magnetic Resonance Spectroscopic Imaging (MRSI) allows non-invasive investigation of regional metabolic processes in vivo, but suffers from long scan-times due to low metabolite concentrations, slow spatial encoding schemes, and low MR sensitivity (for nuclei other than protons). This versatile technique would benefit from a reduction in scan-time in order to make it more clinically applicable. For the first time we apply CS to 23Na-MRSI on mouse hearts demonstrating the potential of CS for high resolution spectroscopic imaging in vivo

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call