Abstract
For multi-user cognitive networks, joint dynamic resource allocation (DRA) and waveform adaptation techniques have been developed that effectively represent, manipulate and utilize the physical-layer radio resources by synthesizing both transmitter and receiver waveforms from generalized signal expansion functions. To effect distributed DRA games, this paper discusses the intertwined sensing task and develops compressed sensing techniques that simultaneously estimate all the channel and interference links using only a small number of samples collected from a sparse set of expansion functions. By properly identifying and utilizing the sparsity properties of a wideband environment, the proposed schemes considerably reduce both sensing time and implementation costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.