Abstract
In dynamic cardiac cine Magnetic Resonance Imaging (MRI), the spatiotemporal resolution is limited by the low imaging speed. Compressed sensing (CS) theory has been applied to improve the imaging speed and thus the spatiotemporal resolution. The purpose of this paper is to improve CS reconstruction of under sampled data by exploiting spatiotemporal sparsity and efficient spiral trajectories.We extend k–t sparse algorithm to spiral trajectories to achieve high spatio temporal resolutions in cardiac cine imaging. We have exploited spatiotemporal sparsity of cardiac cine MRI by applying a 2D+time wavelet-Fourier transform. For efficient coverage of k-space, we have used a modified version of multi shot (interleaved) spirals trajectories. In order to reduce incoherent aliasing artifact, we use different random undersampling pattern for each temporal frame. Finally, we have used nonuniform fast Fourier transform (NUFFT) algorithm to reconstruct the image from the non-uniformly acquired samples.The proposed approach was tested in simulated and cardiac cine MRI data. Results show that higher acceleration factors with improved image quality can be obtained with the proposed approach in comparison to the existing state-of-the-art method.The flexibility of the introduced method should allow it to be used not only for the challenging case of cardiac imaging, but also for other patient motion where the patient moves or breathes during acquisition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.