Abstract
Compressed sensing (CS) lowers the number of measurements required for reconstruction and estimation of signals that are sparse when expanded over a proper basis. Traditional CS approaches deal with time-invariant sparse signals, meaning that, during the measurement process, the signal of interest does not exhibit variations. However, many signals encountered in practice are varying with time as the observation window increases (e.g., video imaging, where the signal is sparse and varies between different frames). The present paper develops CS algorithms for time-varying signals, based on the least-absolute shrinkage and selection operator (Lasso) that has been popular for sparse regression problems. The Lasso here is tailored for smoothing time-varying signals, which are modeled as vector valued discrete time series. Two algorithms are proposed: the group-fused Lasso, when the unknown signal support is time-invariant but signal samples are allowed to vary with time; and the dynamic Lasso, for the general class of signals with time-varying amplitudes and support. Performance of these algorithms is compared with a sparsity-unaware Kalman smoother, a support-aware Kalman smoother, and the standard Lasso which does not account for time variations. The numerical results amply demonstrate the practical merits of the novel CS algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.